Part Number Hot Search : 
RB751S40 UG2KB60 CD4049 MBT678 V175LA2P L35480F 2CLC2036 AON6758
Product Description
Full Text Search
 

To Download STTH3L06B-TR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? 1/10 table 1: main product characteristics i f(av) 3 a v rrm 600 v i r (max) 100 a t j 175c v f (typ) 0.85 v t rr (typ) 60 ns stth3l06 turbo 2 ultrafast high voltage rectifier smb stth3l06u smc stth3l06s do-201ad stth3l06 k a dpak stth3l06b k a nc september 2004 rev. 2 features and benefits ultrafast switching low forward voltage drop low thermal resistance low leakage current (platinium doping) description the stth3l06, which is using st turbo 2 600v technology, is specially suited as boost diode in discontinuous or critical mode power factor correc- tions. this device is intended for use as a free wheeling diode in power supplies and other power switching applications. table 2: order codes part number marking stth3l06 stth3l06 stth3l06rl stth3l06 stth3l06b stth3l06b STTH3L06B-TR stth3l06b stth3l06u 3l06u stth3l06s s06
stth3l06 2/10 table 3: absolute ratings (limiting values) table 4: thermal parameters table 5: static electrical characteristics to evaluate the conduction losses use the following equation: p = 0.89 x i f(av) + 0.055 i f 2 (rms) table 6: dynamic characteristics symbol parameter value unit v rrm repetitive peak reverse voltage 600 v i f(rms) rms forward voltage do-201ad / smb / smc 10 a dpak 6 i f(av) average forward current = 0.5 do-201ad tl = 100c 3 a dpak tl = 155c smb tl = 80c smc tl = 100c i fsm surge non repetitive forward current do-201ad tp = 10ms sinusoidal 70 a smb / smc 60 dpak 40 t stg storage temperature range -65 to + 175 c t j maximum operating junction temperature 175 c symbol parameter maximum unit r th(j-l) junction to lead do-201ad l = 10 mm 20 c/w dpak 5.5 smb 25 smc 20 r th(j-a) junction to ambient (see fig. 13) do-201ad l = 10 mm 75 c/w symbol parameter test conditions min. typ max. unit i r reverse leakage current t j = 25c v r = v rrm 3a t j = 150c 15 100 v f forward voltage drop t j = 25c i f = 3a 1.3 v t j = 150c 0.85 1.05 symbol parameter test conditions min. typ max. unit t rr reverse recovery time t j = 25c i f = 1a di f /dt = -50 a/s v r =30v 60 85 ns t fr forward recovery time t j = 25c i f = 3a di f /dt = 100 a/s v fr = 1.1 x v fmax 100 ns v fp forward recovery voltage i f = 3a di f /dt = 100 a/s 7.5 v
stth3l06 3/10 figure 1: conduction losses versus average current figure 2: forward voltage drop versus forward current figure 3: relative variation of thermal impedance junction ambient versus pulse duration (epoxy printed circuit fr4, l leads = 10mm, s cu =1cm 2 ) figure 4: peak reverse recovery current versus di f /dt (typical values) figure 5: reverse recovery time versus di f /dt (typical values) figure 6: reverse recovery charges versus di f / dt (typical values) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 p(w) t =tp/t tp = 0.05 = 1 = 0.5 = 0.2 = 0.1 i (a) f(av) 0.1 1.0 10.0 100.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 i (a) fm v (v) fm t =150c (typical values) j t =25c (maximum values) j t =150c (maximum values) j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.e-01 1.e+00 1.e+01 1.e+02 1.e+03 z/r th(j-a) th(j-a) t (s) p single pulse smc s = 1cm cu 2 do-201ad l = 10mm leads smb s = 1cm cu 2 dpak s = 1cm cu 2 0 2 4 6 8 10 12 14 16 18 20 0 50 100 150 200 250 300 350 400 450 500 i (a) rm di /dt(a/s) f i =2 x i ff(av) i=i ff(av) i =0.5 x i ff(av) i =0.25 x i f f(av) v =400v t =125c r j 0 100 200 300 400 500 600 700 0 20 40 60 80 100 120 140 160 180 200 t (ns) rr di /dt(a/s) f i =2 x i ff(av) i=i ff(av) i =0.5 x i ff(av) v =400v t =125c r j 0 50 100 150 200 250 300 350 400 450 500 0 20 40 60 80 100 120 140 160 180 200 q (nc) rr i =2 x i ff(av) i =0.5 x i ff(av) di /dt(a/s) f i=i ff(av) v =400v t =125c r j
stth3l06 4/10 figure 7: softness factor versus d if /dt (typical values) figure 8: relative variations of dynamic parameters versus junction temperature figure 9: transient peak forward voltage versus di f /dt (typical values) figure 10: forward recovery time versus di f /dt (typical values) figure 11: junction capacitance versus reverse voltage applied (typical values) figure 12: thermal resistance junction to ambient versus copper surface under lead (epoxy fr4, e cu =35m) (do-201ad) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0 20 40 60 80 100 120 140 160 180 200 s factor di /dt(a/s) f i=i t =125c ff(av) j v =400v r 0.00 0.25 0.50 0.75 1.00 1.25 25 50 75 100 125 i rm q rr s factor t (c) j i=i reference: t =125c ff(av) j v =400v r v (v) fp 0 1 2 3 4 5 6 7 8 9 10 0 20 40 60 80 100 120 140 160 180 200 di /dt(a/s) f i=i t =125c ff(av) j 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 t (ns) fr di /dt(a/s) f i=i t =125c ff(av) j v =1.1 x v max. fr f 1 10 100 1 10 100 1000 c(pf) v (v) r f=1mhz v =30mv t =25c osc rms j 0 10 20 30 40 50 60 70 80 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 r (c/w) th(j-a) do-201ad s (cm2) cu
stth3l06 5/10 figure 13 : thermal resistance junction to ambient versus copper surface under lead (epoxy fr4, e cu =35m) (smb / smc) figure 14 : thermal resistance junction to ambient versus copper surface under tab (epoxy fr4, e cu =35m) (dpak) figure 15 : thermal resistance versus lead length 0 10 20 30 40 50 60 70 80 90 100 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 r (c/w) th(j-a) s (cm2) cu smb smc 0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25 30 35 40 r (c/w) th(j-a) s (cm2) cu dpak 0 10 20 30 40 50 60 70 80 90 100 510152025 r (c/w) th l (mm) lead r th(j-a) r th(j-l) do-201ad
stth3l06 6/10 figure 16: dpak package mechanical data figure 17: dpak foot print dimensions (in millimeters) 6.7 6.7 3 3 1.6 1.6 2.3 2.3 ref. dimensions millimeters inches min. max min. max. a 2.20 2.40 0.086 0.094 a1 0.90 1.10 0.035 0.043 a2 0.03 0.23 0.001 0.009 b 0.64 0.90 0.025 0.035 b2 5.20 5.40 0.204 0.212 c 0.45 0.60 0.017 0.023 c2 0.48 0.60 0.018 0.023 d 6.00 6.20 0.236 0.244 e 6.40 6.60 0.251 0.259 g 4.40 4.60 0.173 0.181 h 9.35 10.10 0.368 0.397 l2 0.80 typ. 0.031 typ. l4 0.60 1.00 0.023 0.039 v2 0 8 0 8
stth3l06 7/10 figure 18: smb package mechanical data figure 19: smb foot print dimensions (in millimeters) e c l e1 d a1 a2 b 1.52 2.75 2.3 1.52 ref. dimensions millimeters inches min. max. min. max. a1 1.90 2.45 0.075 0.096 a2 0.05 0.20 0.002 0.008 b 1.95 2.20 0.077 0.087 c 0.15 0.41 0.006 0.016 e 5.10 5.60 0.201 0.220 e1 4.05 4.60 0.159 0.181 d 3.30 3.95 0.130 0.156 l 0.75 1.60 0.030 0.063
stth3l06 8/10 figure 20: smc package mechanical data figure 21: smc foot print dimensions (in millimeters) e c l e1 d a1 a2 b 2.0 4.2 2.0 3.3 ref. dimensions millimeters inches min. max. min. max. a1 1.90 2.45 0.075 0.096 a2 0.05 0.20 0.002 0.008 b 2.90 3.2 0.114 0.126 c 0.15 0.41 0.006 0.016 e 7.75 8.15 0.305 0.321 e1 6.60 7.15 0.260 0.281 e2 4.40 4.70 0.173 0.185 d 5.55 6.25 0.218 0.246 l 0.75 1.60 0.030 0.063
stth3l06 9/10 figure 22: do-201ad package mechanical data ba e e ?d ?d ?c b note 2 note 1 note 1 ref. dimensions millimeters inches min. max. min. max. a9.500.374 b 25.40 1.000 c5.300.209 d1.300.051 e 1.25 0.049 notes 1 - the lead diameter ? d is not controlled over zone e 2 - the minimum axial length within which the device may be placed with its leads bent at right angles is 0.59"(15 mm) table 7: ordering information epoxy meets ul94, v0 band indicated cathode (do-201ad) bending method: see application note an1471 (do-201ad) ordering type marking package weight base qty delivery mode stth3l06 stth3l06 do-201ad 1.12 g 600 ammopack stth3l06-rl stth3l06 do-201ad 1.12 g 1900 tape & reel stth3l06b stth3l06b dpak 0.3 g 75 tubel STTH3L06B-TR stth3l06b dpak 0.3 g 2500 tape & reel stth3l06u 3l06u smb 0.11 g 2500 tape & reel stth3l06s s06 smc 0.243 g 2500 tape & reel table 8: revision history date revision description of changes october-2001 1 first issue 07-sep-2004 2 smb, smc and dpak packages added
stth3l06 10/10 information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the co nsequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specifications mentioned in this publicati on are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectronics prod ucts are not authorized for use as critical components in life support devices or systems without express written approval of stmicroelectro nics. the st logo is a registered trademark of stmicroelectronics. all other names are the property of their respective owners ? 2004 stmicroelectronics - all rights reserved stmicroelectronics group of companies australia - belgium - brazil - canada - china - czech republic - finland - france - germany - hong kong - india - israel - ital y - japan - malaysia - malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states of america www.st.com


▲Up To Search▲   

 
Price & Availability of STTH3L06B-TR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X